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Abstract—Virtual Infrastructure-as-a-Service (IaaS) clouds
are emerging for secondary cloud service providers to manage
their own IaaS clouds on top of existing IaaS clouds. In virtual
IaaS clouds, guest virtual machines (VMs) run inside cloud
VMs provided by existing IaaS clouds. Unlike traditional IaaS
clouds, they can be migrated between cloud VMs co-located at
the same host. However, the performance of such VM migration
is low due to slow virtual networks and doubled system loads.
To optimize VM migration between co-located cloud VMs, we
propose zero-copy migration for virtual IaaS clouds. Zero-copy
migration just relocates the memory image of a guest VM
without any copy. To enable live migration with negligible
downtime, it first makes the memory of a guest VM share with
the destination cloud VM and thereafter completes memory
relocation. We have implemented a system called VMBeam
for enabling zero-copy migration in Xen. According to our
experimental results, zero-copy migration could achieve high
migration performance and low system loads.

Keywords-Virtual machines, live migration, virtual IaaS
clouds, nested virtualization

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds are widely used
as a basis of various services. They provide users with virtual
machines (VMs), in which users can construct their systems
from scratch. Recently, virtual laaS clouds are emerging
[1]-[4]. A virtual IaaS cloud is a cloud that is constructed
on top of an existing IaaS cloud. Like secondary Internet
service providers (ISPs), secondary cloud service providers
(CSPs) can manage their own laaS clouds without having
data centers, which take high operational cost. For example,
they can provide value-added services such as intrusion
detection in their clouds. Using a technique called nested
virtualization [5], virtual IaaS clouds run guest VMs inside
cloud VMs provided by the underlying IaaS clouds. In virtual
laaS clouds, VM migration is still used, e.g., to keep the
availability of guest VMs when cloud VMs are maintained.
In particular, VM migration between cloud VMs co-located
at the same host is specific to virtual TaaS clouds.

However, the migration performance between co-located
cloud VMs is lower than that between physical hosts. First,
the virtual network between cloud VMs is often slower
than the physical network between hosts. This is due to
the overhead of the network virtualization. In virtual IaaS
clouds, network interface cards (NICs) have to be emulated
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even for the communication between co-located cloud VMs.
Second, system loads are doubled because one host plays
two roles of the source and destination of VM migration.
The source cloud VM has to encrypt and transfer the large
memory image of a guest VM, whereas the destination cloud
VM has to receive and decrypt it. During this migration
process, many memory copies are executed. High loads are
imposed on CPUs, memory, and networks even for one role,
not to mention two roles.

To solve this problem, we propose zero-copy migration for
virtual IaaS clouds. Zero-copy migration is an optimization
for VM migration between cloud VMs co-located at the
same host. It just relocates the memory image of a guest
VM without any copy, instead of transferring the encrypted
image via the virtual network. To enable live migration,
zero-copy migration first makes the guest VM share its
memory with the destination cloud VM, using inter-guest
memory sharing. Then it completes memory relocation by
releasing the memory at the source cloud VM. Thus it is
not necessary to re-transfer the memory modified by the
guest VM during VM migration. Consequently, zero-copy
migration can reduce both the migration time and downtime.

We have implemented a system called VMBeam for
enabling zero-copy migration in Xen 4.2.2 [6]. According
to our experimental results, zero-copy migration was up
to 7.5 times faster than the state-of-the-art VM migration
for virtual TaaS clouds. The downtime became 17% shorter
at least. Under memory-intensive workloads, the increase
in migration performance was much more significant. In
addition, zero-copy migration could suppress the total loads
of CPUs, memory, and networks to 12.5%, nearly 0%, and
nearly 0% of the traditional VM migration, respectively.

This paper is organized as follows. Section II describes
issues of VM migration between co-located cloud VMs. Sec-
tion III proposes zero-copy migration for virtual IaaS clouds
and Section IV shows the experimental results. Section V
describes the related work and Section VI concludes this

paper.
II. VM MIGRATION IN VIRTUAL IAAS CLOUDS

VM migration is still important in virtual IaaS clouds.
Guest VMs can be migrated to enable uninterrupted mainte-
nance of cloud VMs, e.g., software upgrade. Some virtual-



ization software such as Xen 4.7 [6] provide live patching,
which enables upgrading even the hypervisor in cloud VMs
without reboots. However, not all patches can be applied
using this technique. In addition, VM migration is used to
consolidate guest VMs into a smaller number of cloud VMs
and stop idle cloud VMs. This saves the cost of secondary
CSPs like in the traditional IaaS clouds, which use VM
migration to save power by shutting down idle hosts. Also,
load balancing among cloud VMs can be achieved by VM
migration.

In virtual TaaS clouds, a guest VM can be migrated
between cloud VMs co-located at the same host. This is
specific to virtual TaaS clouds, where guest VMs run in
cloud VMs, instead of running directly on physical hosts.
The co-location of cloud VMs occurs when the underlying
TaaS cloud initially creates cloud VMs for a virtual laaS
cloud at the same host. Even if not, they can migrate
cloud VMs to the host running other cloud VMs included
in the same virtual IaaS cloud. In fact, it is report that
the probability of the co-location was more than 8.4% in
Amazon EC2 [7]. The co-location is beneficial to both
primary and secondary CSPs. Primary CSPs can save the
cost by reducing the number of active hosts. Secondary CSPs
can provide customers with faster network between guest
VMs.

VM migration between co-located cloud VMs is expected
to be faster than that between physical hosts. Such VM
migration can just move the memory image of a guest
VM from the source to the destination cloud VM inside
one host. However, this is often not the case. According to
our experiments in Section IV, it took nearly 6 minutes to
migrate a guest VM with 4 GB of memory between cloud
VMs at the same host. This migration time was 3.7 times
longer than that between physical hosts in the traditional
IaaS cloud.

There are two reasons for such a slowdown of VM
migration. First, the virtual network between cloud VMs is
often slower than the physical network due to the overhead
of network virtualization. In virtual IaaS clouds, NICs have
to be emulated for cloud VMs to communicate with each
other even if cloud VMs are co-located at the same host.
This issue has been partly solved by using a fast virtual
network provided by Xen-Blanket [2]. Xen-Blanket para-
virtualizes the network of cloud VMs and avoids the full
emulation of NICs. However, the overhead of the virtual
network still remains.

Second, system loads are doubled because one host plays
two roles of the source and destination of VM migration.
VM migration stresses the involving hosts and networks
largely. The memory image of a guest VM is encrypted to
prevent eavesdropping and tampering during the transfer via
the public virtual network. Such attacks can be mounted
by administrators and the other users in the underlying
laaS clouds. In addition, the copies of a large memory
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Figure 1. Zero-copy migration for virtual IaaS clouds.

image are executed many times. Therefore VM migration
can occupy CPUs and memory bandwidths at both the source
and destination cloud VMs.

In addition, the downtime during VM migration between
co-located cloud VMs is also longer. Live migration [8]
achieves negligible downtime as follows. First, the source
cloud VM transfers the memory image of a guest VM
to the destination cloud VM with the guest VM running.
After transferring the entire memory image, it repeatedly re-
transfers only modified memory regions. At the final stage,
the source cloud VM stops the guest VM and transfers
the remaining memory regions modified. Only the time
needed for the final stage becomes the downtime, but it is
longer in virtual IaaS clouds due to the same reasons above.
In particular, the impact is larger under memory-intensive
workloads due to much more memory to be transferred at
the final stage.

I1I. VMBEAM
A. Zero-copy Migration

To improve the migration performance of guest VMs,
we propose zero-copy migration for virtual IaaS clouds.
Zero-copy migration optimizes VM migration between cloud
VMs co-located at the same host. It achieves zero copy by
leveraging the fact that VM migration is performed inside
one host. It just relocates the memory of a guest VM in
the source cloud VM to the destination cloud VM without
any copy, as illustrated in Fig. 1. The memory image is not
transferred via the virtual network.

Zero-copy migration can reduce both the migration time
and downtime. Since it does not use the virtual network
for data transfers, it does not suffer from the overhead
of network virtualization and enables fast VM migration.
Consequently, it can decrease the CPU load as well as the
network load. In addition, zero-copy migration can reduce
the copy overhead of the large memory image of a guest
VM by simply relocating the memory. Since no data is
exposed to the outside of the source and destination guest
VMs thanks to no copy, the encryption of the memory image
is not necessary. Furthermore, zero-copy migration can also
achieve lower total system loads during VM migration by
reducing the migration time itself.



However, naively relocating the memory of a guest VM
cannot support live migration. If the memory transfer is
simply replaced with memory relocation, a guest VM cannot
continue to run during VM migration. This is because a part
of the memory does not exist at the source cloud VM after
it has been relocated. Each memory page can exist only at
either the source or the destination cloud VM. Worse, it
takes a substantial time to complete memory relocation of
the guest VM. In terms of the downtime, it is not realistic
to stop a guest VM during memory relocation.

To enable live migration, zero-copy migration consists of
two steps for relocating the memory of a guest VM. First,
it makes a guest VM in the source cloud VM share the
memory with the destination cloud VM, which is called
inter-guest memory sharing. Since the shared memory exists
in both the source and destination cloud VMs, the guest
VM can continue to run with its memory even while VM
migration is in progress. As the second step, zero-copy
migration releases the memory of the source guest VM and
completes relocating it to the destination cloud VM at the
final stage of VM migration.

Although the traditional live migration needs multiple
iterations for re-transferring modified memory regions, zero-
copy migration is completed in only one iteration. Thanks
to the memory sharing, modifications to the memory of the
source guest VM are directly reflected to the destination
guest VM. Zero-copy migration does not need to detect
memory pages modified by guest VMs during VM migration
for re-transfers. It is not necessary to transfer modified
memory regions again. This can largely reduce the migra-
tion time especially for guest VMs that execute memory-
intensive workloads. It also reduces the time for transferring
the remaining memory at the final stage of migration. Since
a guest VM is suspended at the final stage, this leads to the
further downtime reduction.

Note that inter-guest memory sharing used in zero-copy
migration does not increase the attack surface. First, only
system administrators in virtual IaaS clouds have the ca-
pability of using this mechanism. The user of a guest VM
cannot eavesdrop on or tamper with memory regions outside
the VM illegally. Second, even the system administrators
cannot share the memory between cloud VMs that belong
to different virtual TaaS clouds. To share the memory, the
agreement between source and destination cloud VMs is
necessary.

B. Implementation

We have implemented a system called VMBeam for
enabling zero-copy migration in Xen 4.2.2 [6]. The cloud
hypervisor runs cloud VMs as fully virtualized (HVM)
guests. In a cloud VM, the guest hypervisor runs guest VMs
as HVM guests. In Xen, the management VM called Dom0
is used to manage the other VMs and emulate I/O devices.
We refer to Dom0Os running on top of the cloud and guest

hypervisors as the cloud and guest DomOs, respectively. Due
to space limitations, we omit the implementation details of
VMBeam in this paper. For the details, see our previous
workshop paper [9].

IV. EXPERIMENTS

We have conducted several experiments to show the
effectiveness of zero-copy migration. For this purpose, we
compared three systems: (1) VMBeam, (2) Xen using nested
virtualization (Xen-Nest), and (3) Xen-Blanket [2]. Xen-
Nest uses the virtual network between cloud VMs for
transferring the memory image of a guest VM. Xen-Blanket
enables direct communication between cloud VMs via the
cloud Dom0O to improve the performance of the virtual
network.

In our experiments, we used Xen 4.2.2 as the cloud
hypervisor and ran the cloud Dom0 and two co-located cloud
VMs on top of it. In each cloud VM, we used Xen 4.2.2 or
Xen-Blanket 4.1.1 as the guest hypervisor and ran the guest
Dom0. We ran Linux 3.2.0 in the cloud Dom0O and Linux
3.5.0 in the guest Dom0. In addition, we ran one guest VM
on the source cloud VM.

For a physical machine in an existing IaaS cloud, we used
a PC with an Intel Xeon E5-2665 processor (8 cores), 32
GB of memory, and a gigabit Ethernet NIC. We assigned
three CPU cores and 10 GB of memory to each cloud VM.
The cloud Dom0 was assigned the remaining two CPU cores
and 9.1 GB of memory. Among the resources assigned to
each cloud VM, we assigned one CPU and memory between
128 MB and 4 GB to a guest VM. The guest Dom0 was
assigned one CPU and 9.5 GB of memory.

A. Migration Time

We changed the size of the memory assigned to a guest
VM between 128 MB and 4 GB and measured the time
needed for VM migration. We used the x| migrate com-
mand, which migrates a VM using an SSH tunnel. Fig. 2(a)
shows the average migration time. The results show that the
migration time was proportional to the memory size of a
guest VM in all the systems. VMBeam achieved the shortest
migration time and could complete the migration of a guest
VM with 4 GB of memory only in 16.3 seconds.

VM migration in Xen-Blanket was 1.2 to 7.5 times slower
than that of VMBeam although it was 2.1 to 2.9 times
faster than that of Xen-Nest. The main reason why Xen-
Nest was so slow is the large difference in throughput of
the virtual network. In contrast, the root cause of the low
performance in Xen-Blanket is encryption and inter-process
communication. To examine the impact of encryption of
the memory image, we disabled encryption in SSH and
measured the migration time. We specified the none cipher in
SSH instead of the default cipher. As a result, the migration
time became shorter in both Xen-Blanket and Xen-Nest.
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Figure 2. Migration performance.

However, VM migration in VMBeam was still up to 3.5
times faster than that of Xen-Blanket.

B. Downtime

We measured the downtime during VM migration, chang-
ing the size of the memory assigned to a guest VM. The
downtime is from when a guest VM is stopped at the final
stage of VM migration until it is resumed at the destination
cloud VM. The average downtime is shown in Fig. 2(b) and
did almost not depend on the memory size of a guest VM.
The downtime in VMBeam was the shortest and 0.6 second.

Xen-Nest achieved the second shortest downtime, but
the downtime was 27% longer on average than that of
VMBeam. It took a longer time to transfer modified memory
via the slow virtual network at the final stage of VM
migration, where the guest VM was stopped. Surprisingly,
the downtime in Xen-Blanket was 32% to 76% longer than
that of Xen-Nest. Since the network throughput in Xen-
Blanket is much higher than that of Xen-Nest, it should take
a shorter time to transfer the remaining information at the
final stage. The root cause is currently unclear. Even when
we disabled encryption of SSH, the improvement was not
large. The downtime in Xen-Nest became shorter by up to
0.14 second, but that of Xen-Blanket became rather longer
by 0.2 second at worst.

C. Network Load

We examined the network load while we migrated a
guest VM with 4 GB of memory. We measured the size of
network data transferred in the guest Dom0. Fig. 3(a) shows
the changes in consumed network bandwidth and Fig. 3(b)
shows the total network transfer during VM migration. Since
VMBeam did not use the virtual network for transferring the
memory image, the total network transfer was almost zero.
For the other systems, approximately 4 GB of data were
transferred at almost constant rates. The transfer lasted for
105 seconds in 300 Mbps in Xen-Blanket, whereas it lasted
for 360 seconds in 100 Mbps in Xen-Nest.

D. CPU Load

To examine how much zero-copy migration reduced the
CPU load, we measured the CPU load of the entire host
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Figure 4. The CPU load during VM migration.

during the migration of a guest VM with 4 GB of memory.
In the cloud Dom(, we obtained the sum of the CPU
utilizations of two cloud VMs and the cloud Dom0. Fig. 4(a)
shows the changes in CPU utilization and Fig. 4(b) shows
the total CPU time used during VM migration. The CPU
utilization in VMBeam was 20% less than those in Xen-
Blanket and Xen-Nest on average. This is because VMBeam
did almost not use the virtual network, which is processed in
not only two cloud VMs but also the cloud Dom0. The total
CPU time in VMBeam was only 12.5% of Xen-Blanket and
3.7% of Xen-Nest.

E. Memory Load

We examined the amount of memory accessed while we
migrated a guest VM with 4 GB of memory. Since we
could not obtain the statistics of memory accesses directly
from hardware, we estimated them from the number of
transferred memory pages and the memory access pattern
in each system. Fig. 5 shows the estimated total memory
access. In VMBeam, the cloud hypervisor relocates all of
the memory pages of the source guest VM to the destination
cloud VM. Therefore VMBeam needs no memory access.

For Xen-Nest, the migration client in the source guest
Dom0 reads the memory of a guest VM via a memory-
mapped region and sends it to the SSH client. The SSH
client encrypts the received data and sends the encrypted
data to the SSH server in the destination cloud VM via
the virtual NIC of the source cloud VM. In cloud Dom0,
the QEMU emulating the virtual NIC reads the data and
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sends it to the QEMU for the destination cloud VM. In the
destination guest Dom0, the SSH server receives the data
via the virtual NIC of the destination cloud VM. Then it
decrypts the received data and sends the decrypted data to
the migration server. Finally, the migration server writes it to
the memory of a cloned guest VM. Therefore it is estimated
that Xen-Nest needs 14 times as many memory accesses as
the size of transferred memory in total.

Xen-Blanket slightly reduces the memory access by using
a fast virtual network. When the SSH client sends data to
the server as in Xen-Nest, the Blanket driver communicates
with the network backend driver in the cloud DomO. The
data is passed using the grant table, which is a mechanism
for memory sharing provided by the Xen hypervisor. Then
the backend driver communicates with the Blanket driver
in the destination guest Dom0. The guest DomO writes the
data to a cloned guest VM as in Xen-Nest. Therefore it is
estimated that the total memory access is 12 times as much
as the size of transferred memory.

F. Memory-intensive Workload

To examine how memory writes in a guest VM affect the
migration performance, we executed VM migration while
running a memory-intensive workload in a guest VM. The
workload performed writes to the memory of 1 GB at the
rate between 1,000 and 10,000 pages per second. To keep the
memory dirty rate constant, we emulated memory writes by
directly rewriting the dirty bitmap, whose bit is set when the
corresponding page is modified. Fig. 6 shows the migration
performance of the guest VM when we allocated 2 GB of
memory to it.

These results indicate that the migration time and the
downtime in VMBeam were almost not affected by memory
writes in the guest VM. This comes from no memory re-
transfers in VMBeam even under frequent memory modifi-
cations. In Xen-Blanket, as expected, the migration time and
downtime were proportional to the dirty rate. However, they
became too large suddenly when the dirty rate was 10,000
pages per second. The migration time was 366 seconds,
while the downtime was 15 seconds.

For Xen-Nest, the migration performance was worst when
the dirty rate was 5,000 pages per second. The migration
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Figure 7. The degradation of web performance under VM migration.

time was 1,290 seconds and the downtime was 102 seconds.
The number of modified pages was kept too large during
VM migration because the memory image was transferred
via the slow virtual network. As a result, Xen-Nest had to
re-transfer the large number of pages at the final stage after
the iteration of memory re-transfers reached the pre-defined
maximum.

G. Impact on Guest VMs

To examine how high system loads due to VM migration
affects a guest VM, we ran the Apache web server in a guest
VM and migrated the VM. We measured the throughput
using the httperf benchmark under normal run and VM
migration. We assigned 1 GB of memory to the guest VM.
In this experiment, we assigned two CPUs to guest DomO to
avoid the conflict between network processing for the web
server and migration processing in it.

Fig. 7 shows that the throughput under VM migration
degraded in all systems. The degradation was 29% in
VMBeam and 51% in Xen-Nest. This is probably because
the slow virtual network used by the web server became a
bottleneck. On the other hand, the performance degradation
was only 14% in Xen-Blanket. This is thanks to the fast
virtual network provided by Xen-Blanket. Using the fast vir-
tual network in VMBeam would suppress the performance
degradation of a guest VM under VM migration.

V. RELATED WORK

Zero-copy migration in this paper was initially proposed
in our previous workshop paper [9]. In that paper, we used



zero-copy migration for lightweight software rejuvenation of
the guest hypervisor and showed only preliminary results.
When the guest hypervisor is aged, the proposed system
starts a new virtualized system at the same host using nested
virtualization and migrates all the guest VMs onto the new
clean guest hypervisor using zero-copy migration. In this
paper, we applied zero-copy migration to a different context,
which is an optimization of VM migration in virtual IaaS
clouds. In addition, we present comprehensive experiments
on zero-copy migration.

RDMA-based migration over InfiniBand [10] needs only
one copy by hardware, i.e., zero copy in software. The
memory image of a VM is directly copied to the memory
of a newly created VM at the destination host using Remote
Direct Memory Access (RDMA). This migration method can
avoid the processing overhead of the TCP/IP stack. However,
it still needs to re-transfer memory modified during VM
migration. In addition, it cannot encrypt the memory image
although the data is transferred via the physical network.
For encrypting the memory image, RDMA-based migration
needs three copies.

To reduce system loads during VM migration, a technique
for limiting a migration speed has been proposed [8]. This
technique simply limits the network bandwidth used by
VM migration and decreases the network load, resulting
in decreasing the CPU and memory loads. However, this
leads to longer migration time and downtime. In addition,
the total system loads can increase in live migration. Since
live migration has to re-transfer memory regions modified
during VM migration, the total size of such memory regions
can increase as the migration time increases. In contrast,
zero-copy migration can achieve both low system loads and
the high migration performance.

Many techniques for page sharing among VMs have been
developed. VMware ESX Server scans the memory of VMs
periodically and makes VMs share identical pages [11].
Satori [12] can detect short-lived sharing opportunities by
using sharing-aware block devices. Difference Engine [13]
shares not only identical but also similar pages between
VMs. Flash cloning in Potemkin [14] creates a new VM
from a reference VM image and enables page sharing be-
tween them. Since all of these techniques use copy-on-write,
page sharing is ceased when shared pages are modified. In
contrast, inter-guest memory sharing in VMBeam continues
page sharing even for modified pages so that modifications
are also shared between VMs.

VI. CONCLUSION

In this paper, we proposed zero-copy migration, which
is an optimization of VM migration between co-located
cloud VMs in virtual IaaS clouds. We have implemented
VMBeam for enabling zero-copy migration in Xen and
showed that zero-copy migration could achieve high migra-
tion performance and low system loads. Our future work

is to transparently switch the traditional VM migration and
zero-copy migration according to the destination. To enable
this, we need a mechanism to obtain information on VM
placement from the cloud hypervisor.
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