Zero-copy Migration for Lightweight
Software Rejuvenation of Virtualized Systems

Kenichi Kourai

Kyushu Institute of Technology
kourai@ci.kyutech.ac.jp

Abstract

Virtualized systems tend to suffer from software aging,
which is the phenomenon that the state of a running system
degrades with time. Software aging is restored by a tech-
nique called software rejuvenation, e.g., a system reboot.
To reduce the downtime due to software rejuvenation, all
the virtual machines (VMs) on an aged virtualized system
have to be migrated in advance. However, VM migration
stresses the system and causes performance degradation. In
this paper, we propose VMBeam, which enables lightweight
software rejuvenation of virtualized systems using zero-copy
migration. When rejuvenating an aged virtualized system,
VMBeam starts a new virtualized system at the same host
by using nested virtualization. Then it migrates all the VMs
from the aged virtualized system to the clean one. At this
time, VMBeam directly relocates the memory of the VMs
on the aged virtualized system to the clean virtualized sys-
tem without any copy. We have implemented VMBeam in
Xen and confirmed the decreases of system loads.

1. Introduction

A virtualized system enables running many virtual machines
(VMs) on one physical host. This reduces the number of
physical hosts in data centers and eliminates the cost. How-
ever, virtualized systems tend to suffer from the phenomenon
called software aging [7] because they are running for a long
time and accumulates more errors. Software aging is caused
by memory leakage, for example, and degrades the state of
running software with time. It results in the performance
degradation of virtualized systems and VMs running on top
of it and can lead to unplanned system stops in the worst
case.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

APSys 2015, July 27-28, 2015, Tokyo, Japan.

Copyright © 2015 ACM 978-1-4503-3554-6/15/07. .. $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2797022.2797026

Hiroki Ooba

Kyushu Institute of Technology
hiroki@ksl.ci.kyutech.ac.jp

To counteract such software aging, a technique called
software rejuvenation has been proposed [7]. Software re-
juvenation returns the state of virtualized systems to that
before software aging progresses. It can recover the system
performance and prevent unexpected system down. A typ-
ical example of software rejuvenation is a system reboot.
However, rebooting a virtualized system needs to stop all the
VMs on top of it and to restart them after the reboot. Since it
takes a long time to shut down and boot the system in each
VM, the downtime cannot be ignored.

One possible approach for reducing this downtime is to
use VM migration. VM migration enables a VM to be moved
to another physical host without stopping it. Using VM mi-
gration, software rejuvenation can first migrate all the VMs
with negligible downtime and then reboot a virtualized sys-
tem without VMs. As a result, software rejuvenation does
almost not interrupt services running in the VMs. However,
VM migration largely stresses the involving hosts and net-
work because it has to transfer large memory images via the
network [12]. This can lead to service level objective (SLO)
violations.

In this paper, we propose VMBeam, which makes soft-
ware rejuvenation of virtualized systems more lightweight
using zero-copy migration. On rejuvenating a running virtu-
alized system, VMBeam starts another clean virtualized sys-
tem at the same host by using nested virtualization. Then it
migrates all the VMs from the aged virtualized system to the
new one. At this time, it leverages the fact that these two vir-
tualized systems run at the same host. Instead of transferring
the memory images of VMs via the network, VMBeam di-
rectly relocates the memory of VMs between different virtu-
alized systems without any copy. To enable a VM to continue
to run during migration, it makes a VM newly created on the
clean virtualized system temporarily share the memory of
the VM on the aged virtualized system. Therefore zero-copy
migration does not need to re-transfer the memory modified
during migration.

We have implemented VMBeam in Xen 4.2.2 [1]. In the
current implementation, two virtualized systems using Xen
run on the Xen hypervisor. On VM migration, a clean vir-
tualized system creates a new empty VM and both virtual-

ized systems pass only the memory information on the two
VMs to the host hypervisor. Using that information, the host
hypervisor makes both VMs share the memory by inter-
guest memory sharing. According to our experimental re-
sults, VMBeam could suppress the CPU, memory, and net-
work loads to 31%, nearly 0%, and nearly 0% of the tradi-
tional migration, respectively. In addition, it could perform
VM migration 5.8 times faster than the traditional migration
between physical hosts at maximum.

This paper is organized as follows. Section 2 describes
issues of software rejuvenation of virtualized systems. Sec-
tion 3 proposes lightweight software rejuvenation using
zero-copy migration. Section 4 explains the implementa-
tion details and Section 5 shows the experimental results.
Section 6 explains the related work and Section 7 concludes
this paper.

2. Software Rejuvenation of Virtualized
Systems

In virtualized systems, software aging [7] tends to progress
because virtualized systems are long-running software, which
accumulates more errors over time. A virtualized system
mainly consists of the hypervisor and often the management
VM. Since a virtualized system has to usually host many
VMs, it is not easy to find appropriate timing for the stop
of a virtualized system. Recently, software aging in Xen has
been studied [15]. The study reported that the free memory
of the management VM decreased by 80% after VM mi-
gration was performed 100 times. Also, Xen had a bug that
caused the decrease of the free disk space by 185 MB af-
ter a VM was suspended and resumed. As software aging is
progressing, the system performance can degrade.

Software rejuvenation [7] is a proactive technique for
counteracting such software aging of virtualized systems.
It can restore virtualized systems to the normal state before
the progress of software aging and prevent the performance
degradation. Its simplest but powerful method is to reboot
a virtualized system. On software rejuvenation, however, a
virtualized system has to stop all the VMs on top of it and
restart them again after its reboot. It takes a long time to shut
down and boot the system running in each VM. In addition,
booting the system often causes heavy disk accesses and de-
grades the system performance. Worse, recently, more VMs
are being consolidated in one virtualized system. Therefore,
the downtime of the services provided by VMs tends to be
longer. The proposed techniques for fast software rejuvena-
tion of virtualized systems [11, 13] can avoid rebooting the
systems in VMs and rejuvenate only a virtualized system.
However, the time needed for rejuvenating a virtualized sys-
tem still becomes the downtime.

To reduce such downtime caused by software rejuvena-
tion, VM migration is often used. In particular, live migra-
tion [4] can achieve negligible downtime. First, a source vir-
tualized system transfers the memory image of a VM to a

destination system with the VM running and stores it into a
newly created VM. After transferring the entire memory im-
age, it transfers only memory areas modified during migra-
tion again until the size of such areas are small enough. At
the final stage, the source system stops the VM and transfers
the remaining memory areas modified, while the destination
system resumes the cloned VM. Using this technique, a vir-
tualized system can migrate all the VMs to other hosts at the
first stage of software rejuvenation. Then it can reboot itself
without VMs. As a result, software rejuvenation does almost
not affect the downtime of VMs.

However, VM migration stresses involving hosts and net-
work largely. Since all the VMs have to be migrated, the
size of transferred memory images can be usually from sev-
eral gigabytes to several hundreds of gigabytes in total. Such
memory images are often encrypted to prevent eavesdrop-
ping and tampering during the transfer via the network.
Therefore, VM migration can occupy CPUs and memory
bandwidths at both source and destination hosts. In addi-
tion, the network performance can be also degraded when
the dedicated network for VM migration is not used. These
high loads in hosts and network degrade the performance of
virtualized systems and VMs running in both hosts. In fact,
it is reported that the web servers in migrating VMs cause
performance degradation by 57% on average during the mi-
gration of 11 VMs [12]. Consequently, VM migration can
violate SLOs such as response time even if the frequency of
software rejuvenation is not so high.

3. VMBeam

In this paper, we propose VMBeam for enabling lightweight
software rejuvenation of virtualized systems. When rejuve-
nating a virtualized system, VMBeam first starts a new virtu-
alized system at the same host by using nested virtualization.
After that, it migrates all the VMs running on top of the aged
virtualized system onto the new one, using zero-copy mi-
gration. Zero-copy migration performs memory relocation
across virtualized systems by leveraging the fact that VM
migration is performed inside one host and efficiently trans-
fers the memory images of VMs. Finally, VMBeam stops
the aged virtualized system to complete software rejuvena-
tion without rebooting it.

3.1 Using Nested Virtualization

VMBeam uses nested virtualization [2] to run two virtual-
ized systems at the same host. Nested virtualization enables
a virtualized system to run in a VM. Fig. 1 shows the sys-
tem architecture of VMBeam while it is rejuvenating a vir-
tualized system. In this paper, we call the traditionally used
hypervisor and VMs the guest hypervisor and VMs, respec-
tively. In contrast, we call added extra ones the host hyper-
visor and VMs, respectively. During software rejuvenation,
two host VMs run on top of the host hypervisor and the guest
hypervisor and guest VMs run inside each host VM.

host VM host VM

guest guest

oSt | | e aapeh P

| aged guest hypervisor | | clean guest hypervisor |

| host hypervisor |

Figure 1. The system architecture of VMBeam.

When software rejuvenation is not in progress, devirtu-
alization [3, 9, 10, 14, 17] can largely reduce the overhead
of nested virtualization. This is a technique for temporar-
ily disabling virtualization provided by the hypervisor. Us-
ing this technique, VMBeam can devirtualize the entire sys-
tem at the end of software rejuvenation and revirtualize it
at the beginning of the next rejuvenation. While the virtu-
alization by the host hypervisor is disabled, we could gain
performance similar to usual single-level virtualization. Al-
though this technique has not been proposed for nested vir-
tualization, it would be also applicable to the host hypervi-
sor. One downside of using devirtualization is that the guest
hypervisor could directly corrupt the hardware state, so that
a hardware reset is required. Without devirtualization, the
hardware state is protected by the host hypervisor. In this
paper, we assume that software aging in the hypervisor does
not corrupt the hardware state in an unrecoverable manner.

In addition, several mechanisms have been proposed to
reduce the overhead of nested virtualization [2]. They can
suppress the performance degradation to 6% to 8%. Special-
purpose host hypervisors as used in CloudVisor [22] and
TinyChecker [18] can improve the performance of nested
virtualization more. Recently, hardware support for nested
virtualization has been also added. For example, Intel VMCS
Shadowing [8] can eliminate VM exits due to VMREAD
and VMWRITE instructions for accessing VMCS. Note that
reducing the overhead of nested virtualization is out of scope
of this paper. This paper focuses on reducing the overhead of
software rejuvenation.

VMBeam needs extra resources for the host hypervisor
and, during software rejuvenation, for one more virtualized
system. However, the total amount of resources consumed
by guest VMs does not increase. Guest VMs run only in
either host VM during a normal run and share the memory
between two host VMs during VM migration. Therefore
VMBeam needs resources only for the guest hypervisor (and
the management VM) in the extra virtualized system. On the
other hand, the amount of resources assigned to host VMs
has to be dynamically adjusted according to the resource
consumption of running guest VMs. To do this, CPU and
memory overcommitment [20] in the host hypervisor can
be used. It allows the host hypervisor to assign CPUs and
memory that exceed the amount of physical resources to

host VMs. In other words, host VMs can share physical
resources. VMBeam can assign minimum resources to the
extra host VM at first and increase the amount of resources
as guest VMs are migrated to it.

3.2 Rejuvenation Target

The target of lightweight software rejuvenation in this pa-
per is the guest hypervisor, not the host hypervisor. This is
because software aging tends to progress in the guest hyper-
visor much faster. First, the guest hypervisor is much larger
in size than the host hypervisor. This is because most users
want feature-rich hypervisors as the guest hypervisor but the
host hypervisor needs only minimum functionality. For ex-
ample, Xen 4.2 is approximately 300K lines of code (LOC),
while the host hypervisor named the security monitor in
CloudVisor is only less than 6K LOC [22]. In addition, Xen
requires the management VM, which runs the regular oper-
ating system and various services to help the hypervisor. In
general, larger hypervisors suffer from software aging more.

Second, devirtualization during a normal run can sup-
press software aging of the host hypervisor because the host
hypervisor does almost not work for virtualization. Third, as
described in Section 2, the guest hypervisor frequently per-
forms complex VM operations such as migration, suspen-
sion, and resumption and therefore requires periodic soft-
ware rejuvenation. In contrast, the host hypervisor does not
perform such operations basically.

Consequently, software rejuvenation of the guest hyper-
visor needs to be more frequent than that of the host hyper-
visor. This means that lightweight software rejuvenation of
the guest hypervisor is more effective for the entire system.
It is meaningful to rejuvenate only the guest hypervisor be-
cause the hypervisor and VMs are much more loosely cou-
pled, compared with the operating system and applications.
Note that rejuvenating guest VMs can be done separately.
If software rejuvenation is required for the host hypervisor,
it can be done as usual after migrating only one host VM
to another host or can be done using fast rejuvenation tech-
niques [11, 13].

3.3 Zero-copy Migration of Guest VMs

Some readers might think that even the traditional migra-
tion becomes faster in VMBeam. Unlike traditional systems
migrating VMs between two physical hosts, VMBeam runs
both the source and destination virtualized systems at the
same host. It can transfer the memory image of a guest VM
via the virtual network inside a host. However, the virtual
network is often slower than the physical network due to the
overhead of network virtualization. This leads to the increase
of the migration time. In addition, system loads are doubled
because one host plays two roles of the client and server in
VM migration. The host has to read the memory image of
a guest VM, send it to the virtual network, receive it, and
write it to a newly created guest VM. A fast virtual network
in nested virtualization has been proposed [21], but encryp-

source host VM destination host VM

unning] ' ' ---------- cloned
guest memory sharing guest
LAV T N VM

| guest hypervisor |

| guest hypervisor |

virtual network L

| host hypervisor |

Figure 2. Guest VMs sharing memory during zero-copy
migration.

tion of the memory image is still a bottleneck in migration.
Such encryption is necessary even in the virtual network to
prevent possible eavesdropping by the other guest VMs.

To reduce such overhead, VMBeam provides zero-copy
migration of guest VMs between virtualized systems at the
same host. Zero-copy migration just relocates the memory
of a guest VM at a source host VM to a new one at a
destination host VM without any copy. It consists of two
steps to enable live migration. First, it makes a source guest
VM share the memory with a destination guest VM so that
the source guest VM can continue to run with its memory
during VM migration. We call this mechanism inter-guest
memory sharing. Fig. 2 illustrates a running guest VMs and
a cloned guest VM after their memory is shared. Second,
zero-copy migration releases the memory of the source guest
VM and completes relocating it to the destination guest VM
at the final stage of migration.

Although live migration needs multiple iterations for re-
transferring modified memory areas, zero-copy migration is
completed in only one iteration. Thanks to the memory shar-
ing, modifications to the memory of a source guest VM are
directly reflected to the destination guest VM. It is not nec-
essary to transfer modified memory again. This can largely
reduce the migration time especially for VMs that execute
memory-intensive workloads. It also reduces the time for
transferring the remaining memory at the final stage of mi-
gration. Since a guest VM is suspended at the final stage,
this leads to the downtime reduction.

Since zero-copy migration does not use the virtual net-
work for data transfers, it can decrease the network load.
As a result, it does not suffer from the overhead of network
virtualization and can also decrease the CPU and memory
loads. In addition, it can reduce the copy overhead of a large
memory image by simply relocating the memory. Thanks to
no copy, the encryption of the memory image is not neces-
sary because any data is not exposed to the outside of source
and destination guest VMs. Furthermore, zero-copy migra-
tion does not need to detect memory modifications by VMs
during migration.

4. Implementation

We have implemented VMBeam in Xen 4.2.2 [1] as a proof
of concept. The host hypervisor runs host VMs as fully vir-
tualized (HVM) guests. In a host VM, the guest hypervisor
runs guest VMs as HVM guests. In Xen, a virtualized system
consists of the hypervisor and the management VM called
Dom0. We refer to Dom0s running on the host and guest
hypervisors as the host and guest Dom0Os, respectively.

4.1 Memory Management

The host hypervisor manages the physical memory called
machine memory in the entire machine and allocates a part of
it to each host VM. Only the allocated memory becomes the
physical memory of a host VM and it is called host physical
memory. The guest hypervisor in a host VM allocates a part
of it to each guest VM. This memory is called guest physical
memory and becomes the physical memory of a guest VM.
For each memory, page frame numbers are consecutively
assigned. Machine frame numbers (MFNs), host physical
frame numbers (HPFNs), and guest physical frame numbers
(GPFNi) are for machine, host, and guest physical memory,
respectively. The mapping between MFN and HPFN and that
between HPFN and GPFN are maintained in the host and
guest hypervisors, respectively.

4.2 Zero-copy Migration

In VMBeam, guest DomO at a source host VM transfers the
memory image of a guest VM to guest Dom0 at a destination
host VM. Without zero-copy migration, a migration client
in the source guest DomO first maps the memory pages al-
located to a guest VM. Then it reads the memory contents
of the guest VM and transfers it to a destination host VM
via an SSH tunnel constructed on the virtual network !. In
contrast, zero-copy migration can complete the transfer of
the memory image only by passing the GPFNs assigned to
the memory of the guest VM to the guest hypervisor. Mem-
ory transfer in zero-copy migration requires neither memory
mapping, encryption by SSH, nor network transfers.

At the destination host VM, a migration server in the des-
tination guest Dom0 creates a new empty guest VM and
maps its memory pages in the traditional migration. Then
it writes the memory contents received via an SSH tunnel
to them. In contrast, zero-copy migration can complete the
receipt of the memory image only by passing the GPFNs
assigned to the memory of the new guest VM to the guest
hypervisor. Real memory transfers are done by the host hy-
pervisor, which is invoked by the guest hypervisor. The host
hypervisor makes a destination guest VM share the mem-
ory pages of a source guest VM, using inter-guest memory
sharing (See Section 4.3 for the detail). Therefore, memory
receipt in zero-copy migration does not need to map memory
pages or to execute the decryption by SSH.

! This is in the case of the x| migrate command. The traditional xm migrate
command transfers a memory image via an SSL connection.

source host VM destination host VM

guest guest guest guest
DomO VM VM Dom0O

uest physical
hypercall; W] 9 rmc T

“ guest hypervisor guest hypervisor I

¢ hypercall —————|

T TmCTTT et e T T

; memory

>| host hypervisor |<
(TTTTT T TTTITITITITITITITTT1]

machine memory

Figure 3. Inter-guest memory sharing across virtualized
systems.

Zero-copy migration is completed after it transfers all the
memory pages of a VM once. In the traditional migration,
the source guest Dom0 runs a migrating source guest VM in
the logdirty mode to detect modifications to memory pages
by the VM. At the end of each iteration of memory transfers,
it obtains a dirty bitmap from the guest hypervisor. A dirty
bitmap maintains which page is modified since it is cleared.
According to the dirty bitmap, the source guest DomO re-
transfers modified memory pages. In contrast, zero-copy mi-
gration does not need to re-transfer memory pages or to run
a guest VM in the logdirty mode, which cause performance
degradation of the target guest VM. Nevertheless, all the
modifications to the memory pages are reflected simultane-
ously to a destination guest VM.

4.3 Inter-guest Memory Sharing

For guest Dom0Os, VMBeam provides a function for shar-
ing memory pages between guest VMs across different host
VMs. As illustrated in Fig. 3, the guest Dom0 in a source
host VM invokes the guest hypervisor. At this time, it passes
an ID of a target guest VM and an array of GPFNs corre-
sponding to memory pages of the guest VM. Similarly, the
guest Dom0 in a destination host VM invokes the guest hy-
pervisor, specifying the same information.

Each guest hypervisor translates the passed array of
GPFNs into that of HPFNs and then invokes the host hy-
pervisor. The guest hypervisor performs this translation us-
ing virtual Extended Page Table (EPT), which maintains the
mapping from GPFNs to HPENs. Then the guest hypervisor
invokes the host hypervisor using a hypercall page [21].

The host hypervisor makes the destination host VM share
memory pages of the source host VM on the basis of the
passed arrays of HPFNSs. It first finds an EPT entry from
an HPFN of the source host VM and obtains an MFN in
the entry. Then it finds an EPT entry from an HPFN of the
destination host VM and sets the obtained MFN to the entry.
It releases the memory page corresponding to the original
MEN in the entry. Consequently, both HPFNs of the source

and destination host VMs are translated into the same MFN
by EPT.

5. Experiments

We have conducted several experiments to show the effec-
tiveness of zero-copy migration. We used two PCs with an
Intel Xeon E5-2665 processor (8 cores, 2.40 GHz), 32 GB
of memory, and gigabit Ethernet. These PCs were connected
via a gigabit Ethernet switch.

5.1 Experimental Setup

To compare VMBeam with the existing systems, we con-
ducted experiments for three systems: VMBeam, Xen-Phys,
which uses two hosts running Xen without nested virtualiza-
tion, and Xen-Blanket [21]. Xen-Blanket introduces a par-
avirtual network driver in guest Dom0Os and enables direct
communication with host Dom0 to improve the performance
of the virtual network.

For VMBeam and Xen-Blanket, we used Xen 4.2.2 sup-
porting nested virtualization as the host hypervisor and ran
two host VMs on top of it. In each host VM, we used Xen
4.2.2 or Xen-Blanket 4.1.1 as the guest hypervisor. In ad-
dition, we ran one guest VM on one host VM. To con-
duct experiments in the same conditions as much as pos-
sible, we used an HVM guest in Xen-Blanket. The origi-
nal Xen-Blanket used a PV guest because it assumed the
host hypervisor without special support for nested virtual-
ization. We ran Linux 3.2.0 in host Dom0 and Linux 3.5.0 in
guest Dom0. We assigned three physical CPUs and 10 GB of
memory to each host VM. Among the resources assigned to
each host VM, we assigned one CPU and memory between
128 MB and 4 GB to a guest VM.

For Xen-Phys, we used Xen 4.2.2 as the hypervisor and
ran one VM in one host. For brevity, we also call this VM a
guest VM in the following. We assigned the same resources
as the above guest VM to this VM.

5.2 System Loads

We examined system loads per host while we migrated a
guest VM with 4 GB of memory. First, we measured the
size of network data transferred in Dom0. Since VMBeam
did not use the virtual network for transferring the memory
image, the total network transfer was less than 0.003% of
Xen-Phys, as shown in Fig. 4a. The reason why the total
network transfer was not zero is that VMBeam still uses
the virtual network to transfer several data such as VM
configuration due to implementation issues.

Next, we measured the CPU utilization in Dom0. The
maximum CPU utilization in VMBeam was twice as large as
that in each host of Xen-Phys. However, as shown in Fig. 4b,
the total CPU time in VMBeam was 29% of the source host
and 31% of the destination host in Xen-Phys. This is because
the migration time in VMBeam was much shorter than that
in Xen-Phys.

7 40

[|mmmm Xen-Phys (src)
[| Xen-Phys (dst)
[[mmmVMBeam

[~ | I Xen-Blanket

| [N Xen-Phys (src) 80| |HEEM Xen-Phys (src)
Il Xen-Phys (dst) I Xen-Phys (dst)
30} |l VMBeam [|l VMBeam

N Xen-Blanket | |HEEE Xen-Blanket

(2]

o

@
=]

downtime (sec)
T ; T

w »
N
o

N

total network transfer (GB)
total CPU time (103 sec)
total memory access (GB)

-
n
o

o

(a) Network (b) CPU (c) Memory

Figure 4. The system loads per host.

150 T T

+—¢ Xen-Blanket
o-e Xen-Phys 4+
== V/MBeam

100+

50

migration time (sec)

n 1 n | n |
0 2 3
memory size (GB)

Figure 5. The migration time.

Since we could not obtain the statistics of memory ac-
cesses directly from hardware, we estimated them from the
number of transferred memory pages and the memory ac-
cess pattern in each system. We consider only the transfer
of the memory image because that is a dominant factor in
VM migration. In VMBeam, the host hypervisor relocates
all of the memory pages of a source guest VM to a destina-
tion one. Therefore VMBeam needs no memory access. The
total memory access in the other systems is shown in Fig. 4c.

5.3 Migration Performance

The time needed for VM migration is shown in Fig. 5. The
results show that the migration time in VMBeam does not
increase largely as the memory size of a guest VM becomes
larger. VMBeam achieved the shortest migration time and
could complete the migration of a VM with 4 GB of memory
in 16 seconds. Compared with Xen-Phys, VMBeam could
execute VM migration 1.1 to 5.8 times faster. However, the
VM migration in Xen-Blanket was 1.1 to 1.3 times slower.
Next, we measured the time during which a guest VM
stopped due to VM migration. As shown in Fig. 6, this
downtime in VMBeam was about 0.6 second, but it is about
0.2 second longer than the downtime in Xen-Phys. This is
due to the overhead of nested virtualization in Xen. To obtain
the CPU state of a guest VM at the final stage of migration,
the migration client has to issue many hypercalls to the
hypervisor. This largely suffers from the impact of nested
virtualization. In Xen-Blanket, the downtime was 0.6 to 0.9

2.0 T T

+—¢ Xen-Blanket
== /MBeam
1.5~ |e-eXen-Phys -

0.5} -

0.0
memory size (GB)

Figure 6. The downtime during VM migration.

second longer than that in Xen-Phys, but the reason is under
investigation.

6. Related Work

On system maintenance in a VM, Microvisor [14] starts an-
other VM and performs the maintenance for the system in
the new VM. After the maintenance, it migrates applications
from the original to the new VM. VMBeam is similar to Mi-
crovisor in that it runs old and new VMs at the same host
and migrates components that are not maintained. One dif-
ference is that VMBeam uses nested virtualization for run-
ning two virtualized systems. Another and bigger one is that
VMBeam focuses on VM migration for lightweight software
rejuvenation. Microvisor focuses on devirtualization for dis-
abling virtualization during a normal run.

RDMA-based migration over InfiniBand [6] needs only
one copy by hardware, i.e., zero copy in software. The mem-
ory image of a VM is directly copied to the memory of a
newly created VM at a destination host using Remote Di-
rect Memory Access (RDMA). However, it still needs to re-
transfer memory modified during migration. In addition, it
cannot encrypt the memory image although the data is trans-
ferred via the network. With the encryption of the memory
image, RDMA-based migration needs three copies.

Many techniques for page sharing between VMs have
been developed mainly for saving memory. VMware ESX
Server scans the memory of VMs periodically and makes
VMs share identical pages [20]. Satori [16] can detect
short-lived sharing opportunities by using sharing-aware
block devices. Difference Engine [S5] shares not only iden-
tical but also similar pages between VMs. Flash cloning in
Potemkin [19] creates a new VM from a reference VM im-
age and enables page sharing between the reference and new
VMs. Since all of these techniques use copy-on-write, page
sharing is ceased when shared pages are modified.

TinyChecker [18] detects hypervisor failures and recov-
ers the hypervisor using nested virtualization. The tiny host
hypervisor traps VM exits from guest VMs to the guest hy-
pervisor and detects crash, hang, memory corruption, and
silent failure. However, it is difficult to detect software aging
that progresses by correct operations, e.g., memory leakage.

Several systems have been proposed to support devirtual-
ization [3, 9, 10, 14, 17]. All of them incur negligible perfor-
mance degradation after the system is devirtualized. Micro-
visor [14] is the first system supporting for devirtualization,
but it does not virtualize memory or I/O devices. In addition,
it depends on the Alpha architecture and redundant hard-
ware. In contrast, Mercury [3] enables dynamically attach-
ing and detaching a full-fledged hypervisor. The guest op-
erating system switches native and virtualized modes by it-
self. To apply this self-virtualization to nested virtualization,
the guest hypervisor and the operating system in the guest
management VM would have to be modified largely. Unlike
these, BMcast [17] can devirtualize shared I/O devices as
well as CPU and memory at the hypervisor level. Thanks
to device mediators in the hypervisor, it does not need any
modifications to the guest operating system. A drawback is
that a device mediator has to be implemented for each I/O
device.

7. Conclusion

In this paper, we proposed VMBeam, which enables light-
weight software rejuvenation of virtualized systems. Us-
ing nested virtualization, VMBeam starts another virtualized
system at the same host when it rejuvenates an aged virtu-
alized system. Using zero-copy migration, it efficiently mi-
grates the VMs running on the aged virtualized system to
the new one. We have implemented VMBeam in Xen and
showed that VMBeam could achieve more lightweight soft-
ware rejuvenation than the existing systems.

One of our future work is to develop a minimal host hy-
pervisor such as CloudVisor [22]. Although we currently
used Xen as a proof of concept, we need the host hyper-
visor that suffers from software aging less frequently than
the guest hypervisor. Another direction is to enable devir-
tualization [14] in the host hypervisor. This can reduce the
overhead of nested virtualization during a normal run.

Acknowledgments

This research was supported in part by JSPS KAKENHI
Grant Number 25330086.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, pages 164—177, 2003.

[2] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B.-
A. Yassour. The Turtles Project: Design and Implementation
of Nested Virtualization. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementa-
tion, 2010.

[3] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew. Mer-
cury: Combining Performance with Dependability Using Self-

virtualization. In Proceedings of the 2007 IEEE International
Conference on Parallel Processing, 2007.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
1. Pratt, and A. Warfield. Live Migration of Virtual Machines.
In Proceedings of the 2nd USENIX Symposium on Networked
Systems Design and Implementation, pages 273-286, 2005.

[5] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelkerrey, and A. Vahdat. Difference En-
gine: Harnessing Memory Redundancy in Virtual Machines.
In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, pages 309-322, 2008.

[6] W. Huang, Q. Gao, J. Liu, and D. K. Panda. High Perfor-
mance Virtual Machine Migration with RDMA over Modern
Interconnects. In Proceedings of the 2007 IEEE International
Conference on Cluster Computing, pages 11-20, 2007.

[7] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
Rejuvenation: Analysis, Module and Applications. In Pro-
ceedings of the 25th IEEE International Symposium on Fault-
Tolerant Computing, pages 381-391, 1995.

[8] Intel Corp. 4th Generation Intel Core vPro Processors with
Intel VMCS Shadowing, 2013.

[9] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
Virtualized Cloud Infrastructure Without the Virtualization. In
Proceedings of the 37th Annual International Symposium on
Computer Architecture, pages 350-361, 2010.

[10] T. Kooburat and M. Swift. The Best of Both Worlds with On-
demand Virtualization. In Proceedings of the 13th USENIX
Workshop on Hot Topics in Operating Systems, 2011.

[11] K. Kourai and S. Chiba. A Fast Rejuvenation Technique for
Server Consolidation with Virtual Machines. In Proceedings
of the 37th IEEE/IFIP International Conference on Depend-
able Systems and Networks, pages 245-255, 2007.

[12] K. Kourai and S. Chiba. Fast Software Rejuvenation of Virtual
Machine Monitors. [EEE Transactions on Dependable and
Secure Computing, 8(6):839-851, 2011.

[13] M. Le and Y. Tamir. ReHype: Enabling VM Survival Across
Hypervisor Failures. In Proceedings of the 7th ACM Interna-
tional Conference on Virtual Execution Environments, pages
63-74, 2011.

[14] D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable Vir-
tual Machines Enabling General, Single-node, Online Mainte-
nance. In Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, pages 211-223, 2004.

[15] E. Machida, J. Xiang, K. Tadano, and Y. Maeno. Combined
Server Rejuvenation in a Virtualized Data Center. In Proceed-
ings of the 9th IEEE International Conference on Autonomic
and Trusted Computing, pages 486493, 2012.

[16] G. Mités, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: Enlightened Page Sharing. In Proceedings of the 2009
USENIX Annual Technical Conference, 2009.

[17] Y. Omote, T. Shinagawa, and K. Kato. Improving Agility
and Elasticity in Bare-metal Clouds. In Proceedings of the
20th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 145—
159, 2015.

[18] C. Tan, Y. Xia, H. Chen, and B. Zang. TinyChecker: Trans-
parent Protection of VMs against Hypervisor Failures with
Nested Virtualization. In Proceedings of the 2nd IEEE/IFIP
International Workshop on Dependability of Clouds, Data
Centers and Virtual Machine Technology, 2012.

[19] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C.
Snoeren, G. M. Voelker, and S. Savage. Scalability, Fidelity,
and Containment in the Potemkin Virtual Honeyfarm. In Pro-
ceedings of the 20th ACM Symposium on Operating Systems
Principles, pages 148-162, 2005.

[20] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and Implementa-
tion, pages 181-194, 2002.

[21] D. Williams, H. Jamjoom, and H. Weatherspoon. The Xen-
Blanket: Virtualize Once, Run Everywhere. In Proceedings
of the 7th ACM European Conference on Computer Systems,
pages 113-126, 2012.

[22] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization. In Proceedings of the 23rd
Symposium on Operating Systems Principles, pages 203-216,
2011.

