The Continuity of Out-of-band Remote Management
Across Virtual Machine Migration in Clouds

Sho Kawahara
Department of Creative Informatics
Kyushu Institute of Technology
Fukuoka, Japan
kawasho@ksl.ci.kyutech.ac.jp

Abstract—In Infrastructure-as-a-Service (IaaS) clouds, users
remotely manage the systems in virtual machines (VMs) called
user VMs, e.g., through VNC. To allow users to manage their
VMs even on failures inside the VMs, IaaS usually provides
out-of-band remote management. This VM management is
performed indirectly via a VNC server in a privileged VM
called the management VM. However, it is discontinued when
a user VM is migrated from a source to a destination host.
This is because a VNC server in the management VM at
a source host is terminated on VM migration. Even worse,
pending data is lost between a VNC client and a user VM.
In this paper, we propose D-MORE for continuing out-of-band
remote management across VM migration. D-MORE provides
a privileged and migratable VM called DomR and performs
out-of-band remote management of a user VM via DomR.
On VM migration, it synchronously co-migrates DomR and
its target VM and transparently maintains the connections
between a VNC client, DomR, and its target VM. We have
implemented D-MORE in Xen and confirmed that a remote
user could manage his VM via DomR even after the VM has
been migrated. Our experiments showed that input data was
not lost during VM migration and the overhead of D-MORE
was acceptable.

Keywords-1aaS clouds, virtual machines, remote manage-
ment, VM migration

I. INTRODUCTION

Infrastructure as a Service (IaaS) provides virtual ma-
chines (VMs) hosted in data centers. Users can set up the
systems in the provided VMs called user VMs and use them
as necessary. They usually manage their systems through
remote management software such as VNC. To allow users
to access their systems even on failures inside their VMs,
[aaS often provides out-of-band remote management via a
privileged VM called the management VM. Unlike usual
in-band remote management, a VNC server is run in the
management VM, not in a user VM, and directly interacts
with virtual devices for a user VM, such as a virtual
keyboard and a virtual video card. Even if the network of a
user VM is disconnected due to user’s configuration errors
or if system failures occur in a user VM, a user can continue
to manage such a VM. In addition, users can perform VM
management more securely because IaaS is responsible for

Kenichi Kourai
Department of Creative Informatics
Kyushu Institute of Technology
Fukuoka, Japan
kourai@ci.kyutech.ac.jp

the security of out-of-band remote management.

However, out-of-band remote management is discontinued
when a user VM is migrated from a source to a destination
host. During the VM migration, virtual devices in the
management VM at a source host are removed. Thereby
a VNC server using the virtual devices is also terminated.
To restart remote management, a user has to identify the
reason of the disconnection, look for a destination host,
and reconnect to a new VNC server at the host. This is
troublesome for a user. Even worse, inputs and outputs for
remote management can be lost by VM migration. Pending
data in a VNC server and virtual devices is abandoned when
virtual devices and a VNC server are terminated. Since
the network connection between VNC client and server
is also terminated, in-flight packets are lost and are not
retransmitted. A user has to recover lost inputs by himself,
but it may be difficult to even notice the data loss itself.
This is critical when a user executes important tasks using
out-of-band remote management.

In this paper, we propose D-MORE, which is the system
for continuing out-of-band remote management across VM
migration. Our idea is running a VNC server and virtual
devices in a privileged and migratable VM called DomR
and co-migrating DomR with its target VM. To achieve the
continuity of remote management, D-MORE transparently
maintains the connections between a VNC client, DomR,
and its target VM at the levels of the network and the virtual
machine monitor (VMM). The VMM is a software layer
underlying VMs and manages the interaction between VMs.
In addition, D-MORE can prevent the data loss of inputs
and outputs for remote management. Pending data in a VNC
server and virtual devices is preserved in DomR because it
is migrated as a part of DomR. In-flight network packets are
retransmitted by TCP even if they are dropped during VM
migration.

We have implemented D-MORE in Xen 4.3.2 [1]. To
run virtual devices in DomR, D-MORE allows DomR to
establish shared memory by mapping memory pages of a
user VM. It also allows DomR to establish interrupt channels
with a user VM using Xen’s event channels. During the co-

migration of DomR and its target VM, D-MORE restores
the states of memory mapping and event channels at a
destination host. To safely perform this state restoration at
appropriate timings and prevent data loss in shared memory,
D-MORE synchronizes the migration processes of the two
VMs. We conducted several experiments to examine the
continuity of out-of-band remote management and the per-
formance of D-MORE. From our experimental results, it was
shown that the remote management was continued across
VM migration and that no data was lost during co-migration.
The downtime during co-migration was acceptable.

The organization of this paper is as follows. Section II
describes issues in out-of-band remote management using
the management VM. Section III proposes D-MORE for
continuing out-of-band remote management across VM mi-
gration. Section IV explains the implementation details in
Xen and Section V shows our experimental results. Sec-
tion VI describes related work and Section VII concludes
this paper.

II. MOTIVATION

A. Out-of-band Remote Management

To manage user VMs in [aaS clouds, a user usually con-
nects a VNC client at user’s host to a VNC server running
in a user VM. This is called in-band remote management
because a user accesses a VM using functionalities provided
inside the VM. However, this in-band remote management
is not powerful enough to manage a user VM in many cases.
If a user has just failed the configurations of the network or
firewall in a VM, he cannot manage the VM at all. At that
time, he would have to abandon that VM and recreate a new
VM from scratch. As another case, when a VNC server in
a user VM is not running normally, a VNC client cannot
access the VM. For example, a VNC server may crash due
to bugs. It is not started until the operating system in a VM
has been booted normally.

To enable users to manage their VMs in such cases,
it is necessary for laaS to provide out-of-band remote
management. As illustrated in Fig. 1, a VNC server is run
for each user VM in a privileged VM called the management
VM. The management VM is often provided in type-I VMMs
such as Xen and Hyper-V and has privileges for accessing
all user VMs. It also provides virtual devices to each user
VM, e.g., a virtual keyboard, a virtual mouse, and a virtual
video card. A VNC server in the management VM directly
accesses virtual devices to interact with a user VM. Out-of-
band remote management does not rely on the network or a
VNC server in a user VM. A user can access his VM as if he
locally logged into the VM even on network failures in the
VM. For example, even if a user fails network configuration
in a user VM, he could fix the problem by modifying the
configuration through a virtual keyboard in the management
VM.

management VM user VM
VNC
server
c;/irt‘ual N
VNG evices
client
Figure 1. Out-of-band remote management of a user VM.

B. VM Migration in Out-of-band Remote Management

IaaS clouds migrate VMs for various purposes. VM
migration allows a running VM to be moved between hosts.
In particular, live migration [2] almost does not stop a VM
during the migration process by transferring most of the
states with the VM running. Using VM migration, laaS
providers can maintain physical hosts without interrupting
services provided by VMs. They can perform load balancing
by migrating heavily loaded VMs to other lightly loaded
hosts. Conversely, they can save power if they consolidate
lightly loaded VMs into a fewer hosts. In in-band remote
management, it is possible to continue VM management
across the migration of a user VM. A VNC server in a
user VM is migrated as a part of the VM and the network
connection between VNC client and server is preserved. At
that time, a user using a VNC client is not aware that his
VM is migrated.

However, in out-of-band remote management, VM man-
agement is discontinued on VM migration. When a user VM
has been migrated, its virtual devices in the management
VM at a source host are removed. The migrated VM uses
new virtual devices created in the management VM at a
destination host. At the same time, a VNC server in the
management VM at a source host is terminated because it
loses the access to the removed virtual devices. As a result, a
VNC client is disconnected from the VNC server. To restart
remote management, a big burden is imposed on users.
First, a user has to identify the reason why a VNC client is
disconnected. The possible cause is not only VM migration
but also network failures or system failures in a user VM
or the management VM. If the disconnection is due to VM
migration, a user has to look for a destination host where
a user VM has been migrated, e.g., from a management
console provided in a cloud. Then he has to reconnect to a
VNC server in the management VM at that host. This can
lower the efficiency of the VM management.

Worse than that, keyboard and mouse inputs can be lost
when a user VM is migrated. If input data has been sent from
a VNC client but has not yet been received by a VNC server,
in-flight network packets are dropped. Since the network
connection between VNC client and server is terminated,
dropped packets are not retransmitted at the network level.

Usually, a VNC client does not have a mechanism for data
retransmission at the application level. If input data received
by a VNC server has not yet been sent to a virtual device,
it is lost by the termination of the VNC server. If input
data received by a virtual device has not been sent to a
user VM, it is also lost by the removal of the virtual device.
When keyboard inputs are lost, a user has to type them again
after the reconnection. However, it may be difficult to even
notice the loss of inputs. As a critical example, when a user
executes the reboot command to complete security updates,
the input of the last enter key may be lost. While he believes
that the system has been updated by the reboot, the real
system 1is still vulnerable due to no reboot. This can largely
affect the correctness of the VM management.

II1. D-MORE

In this paper, we propose D-MORE, which can continue
out-of-band remote management across the migration of user
VMs. The system architecture of D-MORE is shown in
Fig. 2. D-MORE provides a privileged and migratable VM
called DomR for remote management of a user VM. DomR
runs only a VNC server and virtual devices for its target
VM. A VNC client connects to a VNC server in DomR
and accesses a user VM through virtual devices in DomR.
When a user VM is migrated, D-MORE co-migrates the
corresponding DomR as well to the same destination host.
Across the migration, D-MORE transparently maintains all
the connections between a VNC client, DomR, and its
target VM. Specifically, it preserves the connections between
virtual devices in DomR and the target VM at the VMM
level. In addition, it preserves the connection between a
VNC client and a VNC server in DomR at the network
level, as usual VM migration.

DomR has privileges necessary for running virtual de-
vices. Traditionally, virtual devices could run only in the
management VM because they need to access a user VM.
First, DomR has a privilege for establishing shared mem-
ory with its target VM. Using buffers allocated in shared
memory, virtual devices in DomR exchange data with device
drivers in the target VM. For example, when a VNC server
in DomR writes a keyboard input received from a VNC
client to a virtual keyboard, the virtual keyboard writes it to
a keyboard buffer in shared memory. A keyboard driver in
the target VM reads the data from the keyboard buffer and
processes it. Second, DomR has a privilege for establishing
interrupt channels with its target VM. Via interrupt channels,
virtual devices in DomR send virtual interrupts to device
drivers in the target VM. For example, a virtual interrupt
is sent when new data is written to the buffer in shared
memory.

After the co-migration of DomR and its target VM, D-
MORE reconnects DomR and its target VM. During VM
migration, DomR is disconnected from the target VM once
because any connections between VMs are lost except for

source host

=

management;
VM

\| VMM|/

VNC co-migration

client g \
shared management
memory user VM M

virtual /D\ device
devices interrupt drivers

channels

| VMM

/

destination host

Figure 2. The system architecture of D-MORE.

network connections. Specifically, D-MORE re-establishes
the shared memory and the interrupt channels between
DomR and its target VM. To do this, D-MORE saves the
states of memory sharing and interrupt channels at a source
host. Then it transfers those states with the other states
of VMs to a destination host. At a destination host, D-
MORE restores the saved states transparently to DomR and
the target VM. Consequently, virtual devices in DomR and
device drivers in the target VM can continue their execution
from arbitrary points even if they are accessing shared
memory or interrupt channels.

D-MORE synchronizes two migration processes in the co-
migration of DomR and its target VM for three purposes.
The first purpose is to reconnect DomR and the target VM
at appropriate timings. Since shared memory is constructed
using the memory of the target VM, it is restored after the
memory of the target VM has been restored. For consistency,
interrupt channels are saved and restored while both VMs
are stopped. The second purpose is to guarantee to transfer
the latest data in shared memory to a destination host. Even
if DomR modifies shared memory at any time, the migration
process for the target VM is responsible for transferring its
latest version. DomR must not modify it after the target
VM has been migrated. The third purpose is to reduce the
downtime of both DomR and the target VM by stopping
them as late as possible.

Using D-MORE, no inputs or outputs for out-of-band
remote management are lost during co-migration. First,
pending data in a VNC server and virtual devices is pre-
served. Since a VNC server and virtual devices are migrated
as a part of DomR, they can continue to process such
pending data at a destination host. Second, it is guaranteed
that data written to the buffer in shared memory is preserved
by the above synchronization in co-migration. Third, in-

flight network packets from a VNC client to a VNC server
are retransmitted by TCP although they may be dropped
temporarily by migrating DomR. D-MORE preserves the
TCP connection between VNC client and server by running
a VNC server in DomR.

IV. IMPLEMENTATION

We have implemented D-MORE in Xen 4.3.2 [1]. In Xen,
the VMM runs on top of hardware and executes VMs. The
management VM is called Dom0 and a user VM is called
DomU. We have developed DomR by extending our guard
VM [3], which can monitor the resources of DomU and can
be migrated. DomR runs para-virtualized Linux for running
virtual devices for DomU. In the current implementation, D-
MORE supports DomU running para-virtualized Linux and
targets the x86-64 architecture.

Supporting para-virtualized Linux is important because
para-virtualization is often used with full virtualization to
improve the performance. In Xen, for example, several
modes are prepared as extensions of the HVM mode for
full virtualization. The PV-on-HVM mode enables fully
virtualized operating systems to use para-virtualized device
drivers. The PVHVM mode uses para-virtualized interrupt
channels instead of emulating hardware interrupt controllers.
Recent Linux kernel supports these modes.

A. Virtual Devices in DomR

When DomU is booted, D-MORE binds the DomU to
new DomR. To establish shared memory with target DomU,
DomR maps memory pages of that DomU. Thereafter, both
DomR and DomU can access the same memory pages. For
this memory mapping, DomR invokes the VMM by issuing
a hypercall with the page frame number corresponding to
the memory page that DomR wants to share with DomU.
We gave DomR a privilege for mapping memory pages of
only target DomU.

In addition, DomR can establish event channels with
DomU as para-virtualized interrupt channels. An event chan-
nel is a logical connection between two VMs and is used for
sending events such as virtual interrupts. It consists of a local
VM, a local port, a remote VM, and a remote port. After
DomU allocates an event channel and obtains its port, DomR
binds it using DomU’s port. We gave DomR a privilege
for intercepting event channels and establishing them with
its target DomU. DomR can bind arbitrary event channels
allocated by its target DomU. Without this privilege, only
Dom0 can bind DomU’s event channels because DomU
specifies Dom0 as a remote VM of event channels.

DomR runs QEMU [4] customized for Xen to provide
virtual devices and a VNC server necessary for out-of-
band remote management. In traditional out-of-band remote
management, QEMU runs in Dom(. For para-virtualized
DomU, the split-driver model is used in Xen, as illustrated in
Fig. 3. Virtual devices are implemented as backend drivers

DomO DomR DomU

QEMU

map [

e frontend
driver

backend
driver

XenStore

event channel

read/write

VMM

Figure 3. The split-driver model with DomR.

in QEMU. Frontend drivers in DomU communicate with the
backend drivers to use virtual devices. For that communi-
cation, I/O rings and event channels are used. An I/O ring
is a ring buffer for passing data and is allocated in shared
memory. In addition, frontend and backend drivers exchange
device configurations via XenStore in Dom0. XenStore is
a filesystem-like database containing information shared
between VMs.

For both a virtual keyboard/mouse and a virtual frame-
buffer (video card), the initialization of frontend and backend
drivers is performed as follows. When a frontend driver
in DomU connects to its backend driver in DomR, it first
allocates a memory page for I/O rings and writes that
page frame number to XenStore in Dom0. In addition, the
framebuffer frontend driver allocates video memory. Next,
a frontend driver allocates an unbound event channel and
then writes the assigned local port number to XenStore. On
the other hand, a backend driver in DomR watches XenStore
and reads information written by a frontend driver in DomU.
Traditionally, only DomO could read arbitrary entries in
XenStore. We gave DomR a privilege for reading XenStore’s
entries only for its target DomU. From XenStore, a backend
driver reads the frame number of the memory page contain-
ing I/O rings and maps that page. The framebuffer backend
driver also maps the video memory allocated in DomU. Then
a backend driver reads DomU’s local port number of an
event channel and binds the event channel. As such, it shares
I/O rings and establishes an event channel with its frontend
driver in DomU.

When a VNC server in DomR receives a keyboard or
mouse input from a VNC client, it sends the input to the
keyboard/mouse backend driver. The backend driver writes
the input to an I/O ring for inputs in the shared memory.
Then it sends an event to DomU to notify DomU of a new
input in the I/O ring. When the keyboard/mouse frontend
driver in DomU receives that event, it reads the I/O ring and
obtains the input. On the other hand, when an application
in DomU draws graphic objects, the framebuffer frontend
driver updates its own video memory, which is shared with
DomR. It writes an updated area to an I/O ring for outputs
and sends an event to DomR. When the framebuffer backend

driver in DomR receives that event, it reads the I/O ring in
the shared memory and obtains the update information. The
update information is sent to a VNC server and the VNC
server sends updated pixel data to a VNC client.

B. Reconnection between DomR and DomU

To maintain the connections between DomR and DomU
after co-migration, D-MORE restores the mapping state of
DomU’s memory for DomR at a destination host, as shown
in Fig. 4. Traditionally, it was not assumed to migrate a
VM like DomR mapping other VM’s memory. To migrate
DomR, a migration manager running in Dom0 transfers the
memory of DomR from a source to a destination host. In D-
MORE, during this memory transfer, the migration manager
at a source host inspects the page tables of DomR. Then
it sets a monitor bit in a page table entry (PTE) where a
memory page of DomU is mapped. The monitor bits are
transferred together with the memory pages containing the
page tables. At a destination host, the migration manager
inspects the restored page tables of DomR. If a monitor
bit is set in a PTE, the migration manager remaps the
corresponding memory page of DomU to DomR. We have
modified the VMM so that DomO could map a memory page
of DomU to the corresponding DomR. For further details on
this implementation, refer to our previous work [3].

D-MORE also restores the state of event channels at a
destination host. Usually, all of the event channels are closed
on VM migration because event channels are managed
locally by the VMM. In D-MORE, the migration manager
for DomR at a source host obtains a list of the event channels
established between DomR and DomU. Then it transfers
pairs of ports used for the event channels. At a destination
host, the migration manager for DomR re-establishes event
channels between DomR and DomU so that these VMs use
the same pairs of ports as at a source host. It is guaranteed
that any ports are still unused before a VM is restarted
because event channels are allocated or bound by a VM
itself. We have added two new hypercalls to the VMM for
obtaining a list of event channels and establishing event
channels with a pair of specified ports.

To reuse re-established event channels in the operating
system kernels of DomR and DomU, we have modified the
resume operation for virtual interrupts. In para-virtualized
Linux kernel, an interrupt request (IRQ) is mapped to
an event channel, and vice versa. In the original kernel,
these mappings are discarded on resume because event
channels are closed on VM migration. Since D-MORE has
re-established event channels before the resume operation
is executed, our kernel leaves the mappings only for re-
established event channels. To do this, the kernel finds
re-established event channels by issuing a hypercall to
the VMM. For such event channels, it does not initialize
the mapping between an IRQ and an event channel. This
modification was done easily for only one function. As

source host

/ DomO DomR DomU \
migration
manager
event channels
memory-mapping state
event channel ports
7~ Domo DomR DomU
migration remap
memory
manager
_ re-establish event channels j
destination host
Figure 4. Restoring the states of memory mapping and event channels

after co-migration.

a result, QEMU in DomR and para-virtualized drivers in
DomU can use re-established event channels via the same
IRQs as before co-migration.

Since D-MORE maintains the connections between
DomR and DomU, we have also disabled the resume oper-
ations of keyboard/mouse and framebuffer frontend drivers
in DomU. The original frontend drivers execute their re-
sume handlers after DomU has been migrated. Each resume
handler reinitializes I/O rings to prevent the inconsistency
and reconnects to its backend driver by itself. Then several
frontend drivers recover the data lost in I/O rings by re-
executing pending requests. However, such recovery is dif-
ficult for the keyboard/mouse frontend driver because input
data is not left anywhere. Therefore, our frontend drivers do
not reinitialize I/O rings so that pending input and output
data in I/O rings is not lost. I/O rings may be inconsistent
just after co-migration, but they should become consistent
by resuming DomR and DomU. Also, our frontend drivers
do not reconnect to their backend drivers because their
connections are preserved by D-MORE. These modifications
to the drivers were also done easily by simply commenting
out resume handlers.

C. Live Migration with Writable Shared Memory

Live migration enables a VM to be migrated in negligible
downtime. A migration manager in DomO0 first transfers the
memory of a VM to a destination host with the VM running.
Then it repeats to transfer only dirty pages that are modified
during the previous iteration. When the number of dirty
pages to be transferred becomes small enough, the migration
manager stops the VM and transfers the remaining dirty
pages. Finally, it restarts a migrated VM at a destination host.
To detect dirty pages during live migration, Xen provides
the log dirty mode. In this mode, the VMM detects writes
to memory pages and records dirty pages in a log dirty
bitmap. At the end of each iteration of memory transfer,
the migration manager obtains a log dirty bitmap from the

VMM. At the same time, a log dirty bitmap in the VMM is
cleared to record newly modified pages. Then the migration
manager transfers only dirty pages at the next iteration.

However, the log dirty mode cannot be used to detect
writes to the shared memory between VMs. For DomU with
the log dirty mode enabled, the VMM can detect writes
only to the memory pages belonging to that DomU. In other
words, even if DomR modifies memory pages shared with
DomU, the VMM cannot recognize those pages as dirty.
Therefore the migration manager for DomU cannot transfer
the latest contents of memory pages shared with DomR
when they are modified only by DomR. This results in the
data loss of inputs and outputs for remote management after
co-migration. For example, input data in an I/O ring may be
lost when the keyboard backend driver in DomR has written
data to the I/O ring but the frontend driver in DomU has not
read them yet.

To prevent such data loss, D-MORE always considers
DomU’s memory pages shared with DomR in a writable
manner as dirty. Thereby it is guaranteed that a migra-
tion manager transfers shared memory pages modified by
DomR. Although such pages are always dirty, they are
not transferred many times because a migration manager
has a mechanism for preventing frequently modified pages
from being transferred frequently. Specifically, a migration
manager obtains a log dirty bitmap from the VMM not only
at the end of each iteration but also just before the transfer
of each memory block. If pages are modified between them,
the migration manager does not transfer those pages. As a
result, writable shared memory is transferred only once at
the final stage of live migration. The modification to the
shared memory after the last transfer is prevented by the
synchronization in co-migration, which is described in the
next section. In the current implementation, writable shared
memory is always transferred even if it is not modified.
However, it consists of only two pages for I/O rings.

For this purpose, we have extended the log dirty mode,
as shown in Fig. 5. The VMM records the sharing status
of DomU’s memory in a bitmap prepared for each DomU,
which is called a may-write bitmap. When DomU’s memory
page is mapped in a writable manner by DomR, the VMM
sets the bit corresponding to its page frame number in
the may-write bitmap. In contrast, when DomU’s page is
unmapped or is changed to read-only, the VMM clears
the corresponding bit. When a migration manager issues a
hypercall for obtaining a log dirty bitmap, the VMM merges
the log dirty bitmap and the may-write bitmap.

D. Synchronization in Co-migration

For the continuity of out-of-band remote management,
there are seven synchronization points in the co-migration
of DomR and DomU, as illustrated in Fig. 6. After the
migration managers for DomR and DomU start VM mi-
gration, they create new empty VMs at a destination host

DomO DomR DomU

1/0
map ring

migration
manager
backend frontend
driver driver
merged log dirty bitmap
may-write log dirty
bitmap bitmap
VMM
Figure 5. An extension to the log dirty mode.
event
stop channels terminate
DomR I | } }
. . 4 4 4
migration 52 s3 s4 s5
start |
v v |
DomU I } I
stop terminate
destination host restore
register event
create target channels remap restart
| | | | |
DomR | \ I B
S1 S6. | S7
. }
pomu | :)
create memory restart

restored

Figure 6. The synchronization in the co-migration of DomR and DomU.

to store the transferred states. At synchronization point S
after DomR’s creation, the migration manager for DomR
waits for DomU’s creation. Then it registers created DomU
as a target of DomR.

Next, both migration managers at a source host transfer
VM’s memory and synchronize the entrances to the final
stage of live migration at synchronization point So. This is
two-way synchronization, which means that each migration
manager waits until the other can enter the final stage. To
reduce downtime, the migration managers perform extra
iterations, while each examines the state of the other. The
next synchronization point Ss is at the beginning of the
final stage. Before DomU’s stop, the migration manager
for DomU waits for DomR’s stop. This guarantees that
DomR does not modify the shared memory of DomU after
DomU stops and the data in the shared memory has been
transferred.

After the migration manager for DomR has transferred
the remaining memory and the CPU state, it waits for
DomU’s stop at synchronization point S4. Then it saves
pairs of ports used for event channels. On the other hand, at
synchronization point S5 before DomU’s termination, the
migration manager for DomU waits until event channels

are saved. At a destination host, before restarting DomU,
the migration manager for DomU waits at synchronization
point Sg until event channels are restored. These three
synchronization points guarantee that the state of event
channels is consistently saved and restored for VMs with
the stopped state.

Finally, at synchronization point S7, the migration man-
ager for DomR waits until the whole memory of DomU is
restored. After that, it can obtain a list of the frame numbers
of memory pages allocated to DomU. This list is needed
for remapping DomU’s memory to DomR. Note that it is
guaranteed that saving the memory-mapping state completes
before DomU’s termination because it is done before saving
event channels.

V. EXPERIMENTS

We conducted experiments to examine the continuity of
out-of-band remote management across VM migration and
to measure the performance of remote management and co-
migration. For server machines hosting VMs, we used two
PCs with one Intel Xeon E3-1270 3.40 GHz processor, 8
GB of memory, and gigabit Ethernet. We ran a modified
version of Xen 4.3.2 and Linux 3.7.10 in DomO, DomR,
and DomU. By default, we allocated one virtual CPU and
128 MB of memory to DomR, one virtual CPU and 2 GB
of memory to DomU, and eight virtual CPUs and the rest
of the memory to Dom0. For a client machine, we used a
PC with one Intel Xeon E5-1620 3.60 GHz processor, 8 GB
of memory, and gigabit Ethernet. We ran a modified version
of TightVNC Java Viewer 2.0.95 [5] on Windows 7. These
PCs were connected with a gigabit Ethernet switch.

A. Data Loss on Co-migration

We examined that D-MORE could prevent data loss in
out-of-band remote management on VM migration. We sent
a key every 50 ms from a VNC client to a VNC server
and monitored the data received by the keyboard backend
driver during VM migration. We repeated this experiment 10
times and counted the number of lost keys. In the original
Xen, the backend driver was removed by the migration of
DomU. As a result, 1.4 keys were lost in the driver on
average. In D-MORE, the backend driver was migrated with
DomR on the co-migration of DomR and DomU. Across
the co-migration, no keys were lost. During the migration
of DomR, the number of TCP retransmission was 8.5 on
average. These results showed that D-MORE prevented data
loss successfully.

Next, we examined that D-MORE could prevent the loss
of data written in shared memory. To confirm this, we
disabled our extension to the log dirty mode. When the
keyboard backend driver in DomR writes input data to the
I/O ring in shared memory, the memory page may not be
correctly transferred without our extension. We performed
co-migration 10 times, as in the above experiment, and

120

moriginal
100 | |mD-MORE

80

60

40 |

response time (msec)

20

screen

keyboard

Figure 7. The response time of a keyboard input and a full-screen update.

examined whether data was lost or not. By default, we could
not observe any data loss. However, when we added a delay
of 200 ms to DomU’s read of event channels, keys were
lost. This means that data in I/O rings can be lost during co-
migration due to VM scheduling in the VMM and process
scheduling in VMs.

B. Overhead of DomR

To examine the overhead of out-of-band remote manage-
ment via DomR, we first measured the response time of
a keyboard input. The response time was the time from
when a VNC client sent a keyboard event until it received
a screen update caused by its remote echo. For comparison,
we measured the response time when a VNC server ran in
Dom0 as usual. The left bars in Fig. 7 show the averages
and standard deviations in the original Xen and D-MORE.
From these results, the increase of the response time was
negligible.

Next, we examined the response time of a full-screen
update when we updated the full screen (800x600) of
DomU. For a full-screen update, we ran a screen saver that
redrew the full screen frequently in DomU. Compared with
a keyboard input, a full-screen update requires that DomR
handles a larger amount of data. We measured the response
time when we used DomR or Dom0 for running a VNC
server. As shown in Fig. 7, the response time was longer
than that of a keyboard input. However, the difference of
the response times between the original Xen and D-MORE
was negligible.

C. Co-migration Time

We measured the time needed for co-migration of DomR
and DomU. We changed the memory size of DomU from
256 MB to 2 GB. To examine the impact of out-of-band
remote management during co-migration, we measured the
co-migration time both when a VNC client did not connect
to a VNC server and when it sent a keys every 50 ms.
This key input rate is too fast for human, but it is possible
when we copy and paste text. For comparison, we migrated
two independent DomUs in parallel without synchronization,

N
o

35 ——co-migration w/ inputs

5 —— co-migration
ﬁ 30 ¢ ——independent migration
g 25
_5 20
©
@15
=
510 ¢
o

5 F

0 1 1 1 1

0 512 1024 1536 2048
memory size of DomU (MB)
Figure 8. The co-migration time for various memory sizes of DomU.

using the original Xen. We fixed the memory size of one
DomU to 128 MB and changed that of the other DomU. The
co-migration time we measured was from when we started
co-migration until the migration of both VMs completed.

Fig. 8 shows the averages and standard deviations when
we measured the co-migration time 10 times for each
memory size. The co-migration time was proportional to the
memory size of DomU. This is because the total migration
time of two VMs depends on the total size of the memory
to be transferred. Compared with independent migration of
two DomUs, the co-migration time in D-MORE increased
by only 1.7 seconds at maximum. When we performed
remote management during co-migration, the co-migration
time increased largely. The reason is that a larger amount
of memory became dirty in a VNC server, virtual devices,
and DomU. Therefore it took time to enter the final stage
of VM migration.

D. Downtime

First, we measured the downtime of DomR and DomU
during co-migration. The setup of this experiment was the
same as the above. The downtime we measured was the
time in which a VM was not running at either source or
destination host. We conducted this experiment 10 times.
The average downtime was shown in Fig. 9. Since the
standard deviations of all of these downtimes were quite
large (between 6 and 65 ms), we omitted error bars for
visibility. In the independent migration of DomUs, the
downtime was proportional to the memory size of DomU.
However, those of DomR and DomU in D-MORE did not
clearly depend on the memory size.

For DomU, the downtime in D-MORE was shorter than
that in the independent migration of DomUs. This means
that the impact of co-migration on DomU is small. For
DomR, on the other hand, the downtime was much higher
than DomU because DomR stopped before DomU by the
synchronization in co-migration. In addition, DomR was
usually restarted after DomU due to restoring the memory-
mapping state just before its restart. When we performed
out-of-band remote management during co-migration, the

300 T T
——DomR w/ inputs ——DomU w/ inputs
250 | —m—DomR —e—DomU
—&—independent DomU

200 :

downtime (msec)
-
a
o

100
50 r
0 L L 1 L
0 512 1024 1536 2048
memory size of DomU (MB)
Figure 9. The downtime of DomR and DomU for various memory sizes
of DomU.
1200 T T T T
1000 1
o
3 800 | 1
E
[}
£ 600 1
€
2 400 t 1
[S)
°
200 1
O 1 1 1 1
0 512 1024 1536 2048
memory size of DomU (MB)
Figure 10. The user-perceived downtime for various memory sizes of
DomU.

downtime of DomR often increased further, but that of
DomU was almost not affected. The reason is probably that a
larger amount of memory was modified in DomR by remote
management.

Next, we measured the user-perceived downtime at a VNC
client. We sent a key every 50 ms from a VNC client and
measured the response time as in the above experiment.
Then we considered the longest response time at the final
stage of co-migration as the user-perceived downtime. In this
experiment, we allocated memory to DomR and DomU as
in the above experiment. Fig. 10 shows the averages and
standard deviations when we measured the downtime 10
times. The average user-perceived downtime was inversely
proportional to the memory size of DomU and the maximum
was 827 ms. We believe that this downtime is acceptable for
the purpose of remote management although users would
perceive that their VMs are migrated.

E. Performance Degradation during Co-migration

The co-migration of DomR and DomU can affect the
performance of out-of-band remote management. To exam-
ine the impact on the response time, we performed the co-
migration and measured the changes of the response time
during it. In this experiment, we used DomU with 2 GB of

800 T T T T
700 r 1
600 r 1

msec)

e (
o1
o
o
.

= 400 | .
300 | .
200 |]
100 |]

O 1 1 1 1
0 20 40 60 80 100

elapsed time (sec)

response tim

Figure 11. The changes of the response time during co-migration.

12

10 H

frame rate (fps)
(9]

2
0 1 L 1 1
0 20 40 60 80 100
elapsed time (sec)
Figure 12. The changes of the frame rate during co-migration.

memory and sent a key every 50 ms. Fig. 11 shows the result.
After we started co-migration, the response time increased
by 5.4 ms on average. This performance degradation lasted
for 30 seconds. At the final stage of the co-migration, the
response time became 744 ms.

To examine the impact on the frame rate of screen updates
by a screen saver in DomU, we measured the changes of the
frame rate during co-migration. We calculated the average
frame rate from the response times of a full-screen update.
As shown in Fig. 12, the frame rate decreased by about 0.4
frame per second (fps) on average after the co-migration
was started. The degradation of the frame rate lasted for 30
seconds and the frame rate was 6.7 fps at the final stage of
co-migration.

VI. RELATED WORK

To continue out-of-band remote management across VM
migration, there are two approaches different from D-
MORE. The first approach is using a VNC proxy. To manage
a user VM, a VNC client accesses a VNC server in the
management VM via a VNC proxy. When a user VM
is migrated, a VNC proxy can switch the connection to
a VNC server from a source to a destination host. For
example, a console proxy in CloudStack [6] can support this
functionality. Even if the connection between VNC proxy

and server is switched, a user is not aware of VM migration
because the connection between VNC client and proxy is
preserved. However, all the pending data in a VNC server
and virtual devices is lost at a source host.

The second approach is using SPICE [7], which is remote
management software developed for KVM. SPICE supports
VM migration at the protocol level. When a user VM is
migrated, a SPICE server in the management VM notifies a
SPICE client of the destination host. Then a SPICE client
switches the connection to a SPICE server at the destination
host. At that time, a user using a SPICE client is not aware
that his VM is migrated. In addition, no data is lost when
seamless migration is enabled. One disadvantage is that
VM management depends on specific remote management
software. D-MORE enables users to use any remote man-
agement software such as SSH. Another disadvantage is that
the network address of a SPICE server changes every VM
migration. This can make it difficult to configure client-side
firewalls.

Special-purpose VMs proposed so far have similarities
to DomR although most of them are not migratable. Stub
domains [8], [9] in Xen and Qemu VM in Xoar [10]
can run QEMU to provide virtual devices to DomU. They
support fully virtualized DomU, while DomR supports para-
virtualized DomU. Therefore, stub domains and Qemu VM
do not need a privilege for intercepting event channels,
which are used for para-virtualization. On the other hand,
driver domains [11] in Xen can run backend drivers in the
kernel for para-virtualized DomU. Since driver domains are
unprivileged, they use grant tables to share the memory
pages of DomU. Grant tables allow any VMs to map only
memory pages permitted by other VMs. A driver domain
can establish event channels with DomU by making DomU
explicitly specify that driver domain as backend. From these
reasons, only several backend drivers such as a network
driver can run in driver domains.

A guard VM in VMCoupler [3] is a privileged and
migratable VM, which is used as the base of DomR. It
runs intrusion detection systems to monitor the inside of
the target VM. It can map the memory of its target VM,
access virtual disks of the target, and capture packets from/to
the target. However, a guard VM does not have a privilege
for intercepting event channels because it does not need to
interact with the target VM. Service domains (SDs) in a
self-service cloud computing platform [12] have privileges
for accessing target VMs. SDs can monitor the memory of
target VMs and intercept disk access between frontend and
backend drivers. DomB [13] is used to boot DomU more
securely. Instead of Dom0, it can load a kernel image into
the DomU’s memory and set up DomU. These VMs are not
designed for running virtual devices for DomU.

Similar to D-MORE, VMCoupler [3] enables synchro-
nized co-migration of a guard VM and its target VM. It
synchronizes two migration processes mainly for secure

monitoring, while D-MORE does mainly for the conti-
nuity of out-of-band remote management. Therefore the
synchronization in co-migration is largely different between
VMCoupler and D-MORE. VMCoupler performs coarse-
grained synchronization using only the VM states at only
four points. D-MORE performs fine-grained synchronization
using various states in migration managers at seven points.
In addition, co-migration in VMCoupler does not consider
writable shared memory because memory monitoring needs
only read-only mapping.

For concurrent migration of multiple co-located VMs, live
gang migration [14] has been proposed. It transfers memory
contents that are identical across VMs only once to reduce
the migration overhead. It tracks identical memory contents
across VMs and performs memory de-duplication for all the
migrated VMs. It also applies differential compression to
nearly identical memory pages. Unlike D-MORE, live gang
migration does not synchronize between the migration pro-
cesses of multiple VMs. This approach can be incorporated
into D-MORE to reduce the co-migration time.

For virtualization software different from Xen, KVM [15]
runs QEMU including a VNC server and virtual devices in
the host operating system. Since a VM also runs on QEMU
in KVM, it might be possible to continue out-of-band remote
management by migrating a QEMU process with the state of
a VM. However, process migration [16] is not easier than
VM migration. VMware vSphere Hypervisor [17] runs a
VNC server and virtual devices in the VMM and enables
out-of-band remote management without the management
VM. However, when a user VM is migrated, the connection
to a VNC server is terminated.

VII. CONCLUSION

In this paper, we proposed D-MORE for continuing
out-of-band remote management across VM migration. D-
MORE provides a privileged and migratable VM called
DomR to run a VNC server and virtual devices, which
are necessary for remote management of a target VM. D-
MORE synchronously co-migrates DomR with its target
VM and transparently maintains the connections between
a VNC client, DomR, and its target VM at the network
and VMM levels. During VM migration, D-MORE prevents
the loss of inputs and outputs for remote management. We
have implemented D-MORE in Xen and confirmed that the
remote management of a target VM via DomR was not
discontinued on the co-migration. Our experimental results
showed that all the pending data was not lost and that the
overhead of D-MORE was acceptable.

One of our future work is to support other remote
management software in DomR. We could use SSH easily
by disabling the resume operation in the console frontend
driver. To support others, we need to port them so that they
directly access virtual devices. Another future work is to
support fully virtualized VMs in D-MORE. DomR could

easily run virtual devices for them like stub domains in Xen,
but we have to develop a mechanism for migrating them. In
addition, we are planning to reduce resource consumption of
DomR. Running Xen’s Mini OS can decrease the memory
footprint of DomR. Using network address and port trans-
lation (NAPT) enables DomR to use a private IP address.

ACKNOWLEDGMENT

This research was supported in part by JSPS KAKENHI
Grant Number 25330086.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, 1. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles,
2003, pp. 164-177.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live Migration of
Virtual Machines,” in Proc. Symp. Networked Systems Design
and Implementation, 2005, pp. 273-286.

[3] K. Kourai and H. Utsunomiya, “Synchronized Co-migration
of Virtual Machines for IDS Offloading in Clouds,” in Proc.
Int. Conf. Cloud Computing Technology and Science, 2013,
pp- 120-129.

[4] F. Bellard, “QEMU,” http://qemu.org/.

[5] TightVNC Group, “TightVNC,” http://www.tightvnc.com/.
[6] Apache Software Foundation, “Apache CloudStack: Open
Source Cloud Computing,” http://cloudstack.apache.org/.

[7] Red Hat, “Spice,” http://www.spice-space.org/.

[8] J. Nakajima and D. Stekloff, “Improving HVM Domain
Isolation and Performance,” in Xen Summit September 2006,
2006.

[9] S. Thibault, “Stub Domains,” in Xen Summit Boston 2008,
2008.

[10] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield, “Breaking Up is Hard to Do:
Security and Functionality in a Commodity Hypervisor,” in
Proc. Symp. Operating Systems Principles, 2011, pp. 189—
202.

[11] K. Fraser, S. Hand, R. Neugebauer, 1. Pratt, A. Warfield,
and M. Williamson, “Safe Hardware Access with the Xen
Virtual Machine Monitor,” in Proc. Workshop on Operating
System and Architectural Support for the on demand IT
InfraStructure, 2004.

[12] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy,
“Self-service Cloud Computing,” in Proc. Conf. Computer
and Communications Security, 2012, pp. 253-264.

[13] D. G. Murray, G. Milos, and S. Hand, “Improving Xen
Security through Disaggregation,” in Proc. Int. Conf. Virtual
Execution Environments, 2008, pp. 151-160.

[14] U. Deshpande, X. Wang, and K. Gopalan, “Live Gang
Migration of Virtual Machines,” in Proc. Int. Symp. High
Performance Distributed Computing, 2011, pp. 135-146.

[15] A. Kivity and M. Tosatti, “Kernel Based Virtual Machine,”
http://www.linux-kvm.org/, 2007.

[16] D. S. Miloji¢i¢, F. Douglis, Y. Paindaveine, R. Wheeler, and
S. Zhou, “Process Migration,” ACM Comput. Surv., vol. 32,
no. 3, pp. 241-299, 2000.

[17] VMware Inc., “VMware vSphere Hypervisor,” http://www.
vmware.com/.

