
Accurate and Efficient Process Scheduling among Virtual Machines

Hidekazu Tadokoro* Kenichi Kourai†‡ Shigeru Chiba*
*Tokyo Institute of Technology
†Kyushu Institute of Technology

‡JST, CREST

Server consolidation using virtual machines (VMs)
can improve resource utilization by sharing physical re-
sources. To share the CPU resource, the virtual machine
monitor (VMM) schedules VMs and then a guest operat-
ing system (OS) in each VM schedules processes. Since
each process can compete with the other processes, even
in different VMs, process scheduling should consider
all processes in the whole system. For example, low-
importance processes in one VM should not run if high-
importance processes are running in other VMs. How-
ever, it is difficult to schedule processes among VMs be-
cause a guest OS is not aware of the other OSes and the
VMM is not aware of processes.

To solve this problem, we have developed a system-
wide process scheduler called the Monarch scheduler,
which enables the VMM to equally deal with processes
in all VMs. The Monarch scheduler monitors the execu-
tion of processes and changes the scheduling behavior of
guest OSes to achieve its custom scheduling policies. To
obtain information from guest OSes such as CPU times
used by processes, the Monarch scheduler uses virtual
machine introspection (VMI). VMI enables examining
the internal data structures inside guest OSes from the
outside by using their type information.

To change scheduling policies in guest OSes, the
Monarch scheduler uses direct kernel object manipula-
tion (DKOM). DKOM is a technique that manipulates
data in the OS kernel by directly modifying the kernel
memory. To suspend and resume a process, the Monarch
scheduler manipulates a run queue of a process scheduler
in a guest OS or rewrites its state. If a process is ready
in a run queue, the Monarch scheduler removes it from
the run queue to suspend it. For a process waiting for
an event or the currently running process, the Monarch
scheduler changes its state.

We have implemented the Monarch scheduler in Xen.
For ease of application and development, the Monarch
scheduler is implemented as a process in domain 0,
which is a privileged VM. Currently, the Monarch sched-
uler supports Linux 2.6 and Windows Vista as guest

OSes. To examine the scheduling ability of the Monarch
scheduler, we have developed two custom scheduling
policies: proportional-share scheduling and idle-time
scheduling.

According to our experience, it is challenging to
achieve accurate and efficient process scheduling among
virtual machines. First, the process times accounted in
guest OSes may be inaccurate. Some operating sys-
tems performs process accounting based on timer inter-
rupts, but timer interrupts are virtualized in VMs and
may not be triggered at regular intervals. Since the
Monarch scheduler uses process information inside the
guest OSes, it may schedule processes based on wrong
information. Second, the overhead of accessing the
memory in VMs is large. To access a specified mem-
ory region in a VM, the Monarch scheduler has to look
up its page table by mapping several memory pages into
the address space of the process.

We are re-designing the system architecture of the
Monarch scheduler so that its accuracy and efficiency
are improved. For accuracy, the Monarch scheduler it-
self accounts process times by combining VMI with a
technique called Antfarm. Antfarm enables the VMM to
recognize the context switches of processes based on the
CR3 register, which points to a page table in the x86 ar-
chitecture. To monitor and control processes by name,
the Monarch scheduler associates the value of CR3 reg-
ister to a specific process by means of information ob-
tained from guest OSes.

For efficiency, the Monarch scheduler is implemented
in the VMM, not as a process in domain 0. Since the
VMM does not need to map memory pages of VMs and
it can directly access them, the overhead is greatly re-
duced. On the other hand, the safety of the Monarch
scheduler lowers although the performance is improved.
Slight bugs in scheduling policies may make the whole
system crash. To prevent this problem, it is necessary
to write scheduling policies in strongly-typed languages
such as Java, Python, or Haskell.


